
Augmenting Search-based Techniques with Static
Synthesis-based Input Generation

Paulo Santos
LASIGE

Faculdade de Ciências da
Universidade de Lisboa

Lisboa, Portugal
pacsantos@fc.ul.pt

José Campos
LASIGE

Faculdade de Ciências da
Universidade de Lisboa

Lisboa, Portugal
jcampos@fc.ul.pt

Christopher S. Timperley
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
ctimperley@cmu.edu

Alcides Fonseca
LASIGE

Faculdade de Ciências da
Universidade de Lisboa

Lisboa, Portugal
amfonseca@fc.ul.pt

Abstract—Automated test generation helps programmers to
test their software with minimal intervention. Automated test
generation tools produce a set of program inputs that maximize
the possible execution paths, presented as a test coverage metric.
Proposed approaches fall within three main approaches. Search-
based methods work on any program by randomly searching
for inputs that maximize coverage. Heuristic-based methods can
be used to have better performance than pure random-search.
Constraint-based methods use symbolic execution to restrict
the random inputs to those guaranteed to explore different
paths. Despite making the execution slower and supporting very
few programs, these methods are more efficient because the
search space is vastly reduced. The third approach combines
the previous two to support any program and takes advantage
of the space search reduction when able, at the cost of slower
execution. We propose a fourth approach that also refines search-
based with constraints. However, instead of requiring a slower
symbolic execution when measuring coverage, constraints are
statically extracted from the source code before the search
procedure occurs. Our approach supports all programs (as in
Search-Based) and reduces the search-space (as in Constraint-
based methods). The innovation is that static analysis occurs
only once and, despite being less exact that symbolic execution,
it can significantly reduce the execution cost in every coverage
measurement. This paper introduces this approach, describes
how it can be implemented and discusses its advantages and
drawbacks.

Index Terms—Evolutionary Computation, Test Generation,
Program Synthesis

I. INTRODUCTION

Testing plays a vital role in the software development pro-
cess [1]. However, testing often involves the tedious and error-
prone task of manually writing test cases. Automated test gen-
eration reduces this burden by automatically generating pro-
gram inputs that exercise different execution paths. Proposed
methods fall within three main approaches: Search-based,
Constraint-based and hybrid approaches. Figure 1 shows the
tradeoffs between families of test generation techniques in
terms of search efficiency and supported program features
(e.g., robustness against non-deterministic behavior).

Search-based test generation techniques evolve test
suites [2] maximizing “test adequacy” using test coverage
metrics (e.g., statement, branch, MC/DC) [3]. By treating
the System Under Test (SUT) as a black box, search-based

techniques are generic and can scale to any program. Although
effective, their performance depends on whether the heuristic
provides sufficient guidance [4].

Constraint-based test generation techniques, such as
Seeker [5], and the one used by Achour and Benattou [6],
use Static and Dynamic Symbolic Execution (DSE) to max-
imize coverage by synthesizing inputs that exercise different
execution paths.

Although these approaches do not require heuristics, they
are limited in their applicability and the number of sup-
ported program features. Furthermore, the underlying con-
straint solvers have considerable computational costs of sym-
bolic execution. Moreover, a recent study [7] identified differ-
ent categories of problems where the application DSE-based
approaches face challenges, from which the following are con-
sidered in this work: Environment: dealing with unknown and
non-deterministic behavior in the program; and, Constraint
solving: efficiency issues when dealing, for instance, with non-
linear arithmetic and complex data structures.

Hybrid approaches have successfully combined search- and
constraint-based [8, 9, 10, 11, 12, 13] to obtain higher coverage
than search-based techniques in fewer iterations and the same
or higher coverage than DSE. In programs unsupported by
symbolic execution (e.g. dynamically complying with the
values in an object [13]), hybrid approaches have the same
performance as pure search-based ones.

In this paper, we propose an approach that augments search-
based techniques with optimistic static analysis-guided input
generation.

Our approach requires a white box view of the SUT (i.e.,
source code access) but does not restrict the program. If the
constraint solver does not support a given condition, that
condition contributes to the heuristic measure, and, unlike
in DSE, it does not prevent the extraction of conditions
from the remainder of the program. The advantage over pure
search-based methods is the guarantee of the diversity in the
initial population w.r.t. the supported conditions. Furthermore,
mutation operators do not reduce this diversity. This diversity
acts as a proxy for coverage as the inputs exercise the different
branching conditions’ paths.



Search Efficiency

Su
pp

or
te

d 
Pr

og
ra

m
Fe

at
ur

es
X

SBST

DSE

Hybrid

Proposed
Approach

FastSlow

Complex

Simple

Fig. 1. A comparison of test generation techniques in terms of their efficiency
(x-axis) and supported programs (y-axis).

II. MOTIVATIONAL EXAMPLE

Listing 1 presents a function that transfers an amount of
money x from one account a1 to another a2 provided that the
transfer is not deemed to be fraudulent (randomly checked
one-tenth of the times), and sufficient funds exist to complete
the transfer. The check_fraud and get_tax function
validate and obtain information from a server, respectively.
1 def transfer(x:int, a1:Account, a2:Account):
2 if x % 10 == 0:
3 if check_fraud(x, a1, a2):
4 raise FraudException()
5

6 if x >= 100:
7 tax = get_tax(x)
8 if x - tax < a1.amount:
9 raise NoBalanceException()

10 else:
11 tax = 0.0
12

13 a1.amount -= (x + tax)
14 a2.amount += (x)
15

16 return a2

Listing 1. Function transfer transfers an amount of money x
between two accounts in Python.

In this example, DSE suffers from a couple of important
limitations. Firstly, pure DSE approaches are incapable of
handling the check_fraud and get_tax functions. Both
functions represent invocations over code that is not accessible,
i.e., available in dynamically linked libraries requiring server
calls (Lines 3 and 7), and so, it cannot be analyzed. Fur-
thermore, both calls can have a non-deterministic behaviour:
Hybrid approaches are more robust in this sense. Although
DSE cannot reason about the specified conditional expressions,
SBST techniques try to overcome this limitation by blindly
searching for values that hold for the entire conditional ex-
pression. However, conditional expressions not supported by
DSE do not provide extra help in guiding the search-based
techniques, reducing the search efficiency.

Secondly, test inputs generated by DSE suffer from a lack
of diversity. SMT solvers can efficiently find an input that
satisfies a given condition, but is ill-suited for producing a
diverse set of such inputs. The resulting lack of diversity
within test inputs is detrimental to the exploration of the
search space within hybrid approaches [14]. These two limi-
tations motivate developing an approach capable of reusing

Population Evolutionary 
ProcedureSelection

Evaluation

Mutation

Recombination

Fitness Conversor

N
on

-s
ta

tic
 C

on
di

tio
na

ls

fi

Non-deterministic Synthesizer

check

SAT/UNSAT

Synthesis SMT solver
Static Conditionals

.py

Test Suite

Conditional Expressions
Extraction

Fig. 2. Interaction between the evolutionary synthesis of input values.

the SMT-unsupported conditional expressions as heuristics
and generating diverse values. Both these requirements are
useful in improving the search. More exact heuristic metrics
and a diverse population are determinant in the evolutionary
algorithms used by Search-based approaches.

III. APPROACH

Our approach uses optimistic static analysis to restrict the
search-based procedure.

Figure 2 illustrates the three high-level steps of our ap-
proach: Firstly, the conditional expressions within the SUT are
extracted (Section III-1); Secondly, the conditional expressions
are categorized in terms of their static verifiability (Sec-
tion III-2); Finally, the conditional expressions are used to
synthesize and evolve populations of test inputs via a multi-
objective genetic algorithm (Section III-3).

1) Propagate and extract the conditionals: The first step
of the approach works quite similar to DSE, but statically:
Conditional expressions are extracted from the function code.
To ensure more meaningful and correct properties, the def-
initions of the used variables in the conditional expressions
are propagated throughout the program, as happens with the
tax declaration. To maximize the coverage of the transfer
function, the system should be capable of generating input
variables for the x, a1, and a2 variables that comply with the
following conditional expressions, and where the infeasible
conditional expressions are filtered.



1) x % 10 == 0

2) not(x % 10 == 0)

3) x % 10 == 0 and
check_fraud(x, a1, a2)

4) x % 10 == 0 and
not(check_fraud(x, a1, a2))

5) not(x % 10 == 0)and x >= 100

6) x % 10 == 0 and
not(check_fraud(x, a1, a2))and x >= 100

7) not(x % 10 == 0)and x >= 100 and
x - get_tax(x)< a1.amount

8) not(x % 10 == 0)and x >= 100 and
not(x - get_tax(x)< a1.amount)

9) x % 10 == 0 and
not(check_fraud(x, a1, a2))and
x >= 100 and x - get_tax(x)< a1.amount

10) x % 10 == 0 and x >= 100 and
not(check_fraud(x, a1, a2))and
not(x - get_tax(x)< a1.amount)

11) not(x % 10 == 0)and not (x >= 100)

To ensure reachability for a specific condition, c1, all
the previous conditional expressions present in the possible
execution paths are prepended to it.

2) Categorize conditional expressions: Conditional expres-
sions are split into two sets in terms of whether or not they are
statically verifiable using an SMT solver. The use of language
features or unknown or non-deterministic functions prevent a
constraint from being statically verifiable.

3) Assign conditions to individuals: Figure 2 illustrates the
use of these conditions throughout the evolution.

Individuals in the initial population are assigned one of
the constraint conditions. Thus, it is expected that the initial
population will be diverse regarding the conditions that they
fulfil.

The statically-verifiable component of the condition will
be used to synthesize input values. We rely on the non-
deterministic synthesis presented in Refined Typed Genetic
Programming [15] to ensure value diversity, typically not
provided by SMT solvers.

To maintain this value diversity in future generations, muta-
tions to an individual preserve the same constraints. The same
synthesis procedure is used from the same constraints, but
different values can be generated, thus mutating the individual.
Similarly, recombination should comply with the statically
verifiable conditions of each parent.

While preserving the conditions assigned to an individual
during the evolution may restrict the possible combinations
of operators, this is how we can reduce the search space,
improving search efficiency.

Fitness evaluation also takes into account the constraint con-
ditions, but only those that are not statically guaranteed. These
boolean conditions are converted to a continuous function,
using one of several available methods [16, 17]. Continuous
functions have finer granularity, thus being more useful in
heuristic methods. This fitness function can be combined with

the main test coverage metric, augmenting the heuristic with a
test-case diversity. This approach is more robust in preventing
a single high-coverage test from eliminating other smaller but
complementary tests from the population.

At the end of the evolutionary process, different individuals
can be combined to create a test suite that will guarantee
diversity in terms of the source code’s extracted conditions.

Most hybrid approaches between search-based and
constraint-based methods rely on DSE.

In general, three main directions have been explored: (1)
integration of DSE within the search, e.g., by using DSE as a
single mutation operator [10] or to aid the genetic operations
in the evolutionary algorithm [18]; (2) integration of a search
algorithm within DSE [8, 19] to, e.g., solve floating-point
constraints [8]; and (3) adaptative integration of DSE and
search, whereas the hybrid approach switches between DSE
and search to explore other properties of the software under
test or other areas of the search space [13, 20].

Our approach does not rely on DSE, but it shares similarities
with the first group: it uses the extracted constraints to restrict
the initial population and genetic operators like recombination
and synthesis.

But there are significant differences between using opti-
mistic static analysis and DSE. Optimistic Static Analysis
requires access to the source code, while DSE can be in-
strumented to existing binaries. Because not all source code
is available, some constraints in runtime-linked code may
not be extracted. DSE does not suffer from this issue as
instrumentation can occur at runtime. However, DSE intro-
duces overhead with this instrumentation, which is constant at
every generation for each individual. Our approach introduces
no overhead in evaluation because it does not modify the
program. Instead, only a one-time overhead occurs before the
evolution. We believe this presents a significant computational
cost reduction. The time saved by not instrumenting the code
can be used to explore more inputs in the search procedure.
Finally, our approach is optimistic because if SMT solvers do
not support one constraint, it is still used to improve the fitness
function. DSE cannot support several features of programming
languages, thus excluding those programs from using these
techniques. Our approach supports the same programs are pure
search-based approaches.

IV. CONCLUSION

Automatic testing plays an essential role in the development
of software. Different techniques were introduced to help
programmers automate test generation. Hybrid generation-
based testing combines constraint-based techniques, widely
known for their search efficiency, with search-based techniques
known for their robustness and extensive support of program
features. Nevertheless, hybrid approaches are limited by the
same aspects of the underlying techniques. Hybrid approaches
rely on DSE, which does not produce diverse values, essential
for search-based algorithms. Additionally, SBST techniques
require the help of DSE to improve its search efficiency, but



the limited support for programming language features makes
hybrid approaches limited in the real-world.

This work proposes to overcome both limitations, using
optimistic static analysis instead of DSE.

Similar to other approaches, this technique tries to gen-
erate tests that maximize program coverage efficiently. We
introduced the categorization of conditional expressions to
improve the search-based heuristics’ expressiveness and use a
non-deterministic synthesizer to maximize generated expres-
sions’ diversity. Finally, we presented an example where this
approach is more efficient than existing approaches.

V. ACKNOWLEDGEMENTS

This work was supported by the Fundação para a Ciência
e a Tecnologia (FCT) under LASIGE Research Unit, ref.
(UIDB/00408/2020) and (UIDP/00408/2020), the GADgET
project (DSAIPA/DS/0022/2018), the CMUPortugal project
CAMELOT (POCI-01-0247-FEDER-045915), and the U.S.
Air Force Research Laboratory (#OSR-4066). The authors
are grateful for their support. Any opinions, findings, or
recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government.

REFERENCES

[1] G. J. Myers, The art of software testing (2. ed.). Wiley, 2004.
[2] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE

Trans. Software Eng., vol. 39, no. 2, pp. 276–291, 2013.
[3] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri,

“Combining multiple coverage criteria in search-based unit
test generation,” in Search-Based Software Engineering - 7th
International Symposium, SSBSE 2015, Bergamo, Italy, Septem-
ber 5-7, 2015, Proceedings, ser. Lecture Notes in Computer
Science, M. de Oliveira Barros and Y. Labiche, Eds., vol. 9275.
Springer, 2015, pp. 93–108.

[4] P. McMinn, “Search-based software test data generation: a
survey,” Softw. Test. Verification Reliab., vol. 14, no. 2, pp. 105–
156, 2004.

[5] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su, “Synthesizing method sequences for high-coverage test-
ing,” in Proceedings of the 26th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011, Port-
land, OR, USA, October 22 - 27, 2011, C. V. Lopes and
K. Fisher, Eds. ACM, 2011, pp. 189–206.

[6] S. Achour and M. Benattou, “Constraint based testing and ver-
ification of java bytecode programs,” in 5th IEEE International
Congress on Information Science and Technology, CiSt 2018,
Marrakech, Morocco, October 21-27, 2018, M. E. Mohajir,
M. A. Achhab, B. E. E. Mohajir, and I. Jellouli, Eds. IEEE,
2018, pp. 64–69.

[7] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,” ACM
Comput. Surv., vol. 51, no. 3, pp. 50:1–50:39, 2018.

[8] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux,
“Flopsy - search-based floating point constraint solving for
symbolic execution,” in Testing Software and Systems - 22nd
IFIP WG 6.1 International Conference, ICTSS 2010, Natal,
Brazil, November 8-10, 2010. Proceedings, ser. Lecture Notes
in Computer Science, A. Petrenko, A. da Silva Simão, and J. C.
Maldonado, Eds., vol. 6435. Springer, 2010, pp. 142–157.

[9] P. Tonella, “Evolutionary testing of classes,” in Proceedings
of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA,

July 11-14, 2004, G. S. Avrunin and G. Rothermel, Eds. ACM,
2004, pp. 119–128.

[10] J. Malburg and G. Fraser, “Combining search-based and
constraint-based testing,” in 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, November 6-10, 2011, P. Alexander, C. S.
Pasareanu, and J. G. Hosking, Eds. IEEE Computer Society,
2011, pp. 436–439.

[11] K. Inkumsah and T. Xie, “Evacon: a framework for inte-
grating evolutionary and concolic testing for object-oriented
programs,” in 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), November 5-9,
2007, Atlanta, Georgia, USA, R. E. K. Stirewalt, A. Egyed, and
B. Fischer, Eds. ACM, 2007, pp. 425–428.

[12] ——, “Improving structural testing of object-oriented programs
via integrating evolutionary testing and symbolic execution,” in
23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2008), 15-19 September 2008, L’Aquila,
Italy. IEEE Computer Society, 2008, pp. 297–306.

[13] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-
based test suite generation with dynamic symbolic execution,”
in IEEE 24th International Symposium on Software Reliability
Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7,
2013. IEEE Computer Society, 2013, pp. 360–369.

[14] N. Albunian, G. Fraser, and D. Sudholt, “Measuring and main-
taining population diversity in search-based unit test genera-
tion,” in Search-Based Software Engineering - 12th Interna-
tional Symposium, SSBSE 2020, Bari, Italy, October 7-8, 2020,
Proceedings, ser. Lecture Notes in Computer Science, A. Aleti
and A. Panichella, Eds., vol. 12420. Springer, 2020, pp. 153–
168.

[15] A. Fonseca, P. Santos, and S. Silva, “The usability argument for
refinement typed genetic programming,” in Parallel Problem
Solving from Nature - PPSN XVI - 16th International Con-
ference, PPSN 2020, Leiden, The Netherlands, September 5-
9, 2020, Proceedings, Part II, ser. Lecture Notes in Computer
Science, T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr,
M. T. M. Emmerich, and H. Trautmann, Eds., vol. 12270.
Springer, 2020, pp. 18–32.

[16] A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,” in Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2008, June 1-6,
2008, Hong Kong, China. IEEE, 2008, pp. 162–168.

[17] P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing deeply
nested branches,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, L. Cavallaro,
J. Kinder, X. Wang, and J. Katz, Eds. ACM, 2019, pp. 499–
513.

[18] Z. Zhu and L. Jiao, “Improving search-based software testing
by constraint-based genetic operators,” in Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO
2019, Prague, Czech Republic, July 13-17, 2019, A. Auger and
T. Stützle, Eds. ACM, 2019, pp. 1435–1442.

[19] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè, “Combin-
ing symbolic execution and search-based testing for programs
with complex heap inputs,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, T. Bultan
and K. Sen, Eds. ACM, 2017, pp. 90–101.

[20] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th
International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, USA, May 20-26, 2007. IEEE Computer
Society, 2007, pp. 416–426.


