
GABezier at the SBST 2021 Tool Competition
Florian Klück, Lorenz Klampfl, Franz Wotawa

Christian Doppler Laboratory for Quality Assurance Methodologies for Autonomous Cyber-Physical Systems
Institute for Software Technology, Graz University of Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria

{fklueck,lklampfl,wotawa}@ist.tugraz.at

Abstract—GABezier is a search-based tool for the automatic
generation of challenging road networks for virtual testing of
an automated lane keep system (ALKS). This paper provides
a brief overview on the tool and summarizes the results of
GABezier’s participation at the first edition of the Cyber-Physical
Systems Testing Tool Competition. We submitted our tool in two
configurations, namely GABExplore and GABExploit. Especially
the latter configuration has efficiently generated valid test cases
and triggered many faults.

I. INTRODUCTION

The ambitious development of Advanced Driver Assistant
Systems (ADAS) introduces new challenges to the well-
established verification and validation methods in the auto-
motive industry as described in [1] and [2] . In the first edi-
tion of the Cyber-Physical Systems Testing Tool Competition
different research groups developed automated test generation
tools for virtual testing of self-driving vehicle software. With
GABezier, we submitted a tool for the automatic generation
of challenging road networks, combining Bezier Curves and
Search [3]. We submitted two configurations of our tool, an ex-
ploratory configuration (GABExplore) that aims to maximize
the number of unique failing test cases and an exploitative
configuration (GABExploit) that aims to maximize the overall
number of failing test cases. Both configurations were able to
generate failure inducing inputs and in particular the latter
configuration was able to expose the highest number of
failing test cases [4] during the competition. In this paper we
provide an overview on the GABezier method, summarize the
results achieved in the competition and finally outline present
limitations that we plan to consider as part of our future work.

II. OVERVIEW GABEZIER

GABezier aims to generate challenging road networks for
virtual testing of an ALKS. For our method, road networks
are represented as parametric curves, which are constructed
based on control point sets. The road points described by
the parametric curve form the input for the underlying code
pipeline to automatically generate virtual roads, which are exe-
cutable in a simulation environment. Furthermore, the obtained
virtual road defines the dynamic driving task the ALKS has to
perform from start to end. Changing the location of one control
point has global influence on the resulting road geometry.
During testing, we search for control point arrangements
that result in challenging road networks. We consider road
networks challenging, when the ALKS equipped vehicle does
not perform the dynamic driving task correctly and leaves

the intended road path. For search, as in our previous work
[5], we use a genetic algorithm, where one set of control
points represents one individual in the seed population. For
evaluation of one control point individual, we construct the
corresponding parametric curve and hand over the obtained
road points to an underlying code-pipeline that was provided
by the organizers of this competition [6]. Here, the final road
is constructed, validated and executed in a virtual environment
namely BeamNG.research [7]. To determine each individual’s
fitness, we measure the distance between the ego vehicle and
the center line and outer line of the road. For optimization we
rely on the standard genetic operators of crossing and mutation
and aim to maximize the fitness function. For the competition
we submitted two configurations of our tool, GABExploit and
GABExplore.

a) GABExploit: In the exploitative configuration we ran-
domly generate a seed population and continue the search until
the given time budget is consumed. We aim to maximize the
total number of failures exposed.

b) GABExplore: In the exploratory configuration, once
a failure inducing input is found we restart the search with a
new randomly generate seed population until the given time
budget is consumed. Here, we aim to find more diverse failing
test cases.

III. EXPERIMENTAL SET-UP AND PROCEDURE

The goal of the competition is to generate as many diverse
failing test inputs as possible until a given time budget is
consumed. A test input is considered failed, when the resulting
virtual road forces the ALKS equipped vehicle to leave its
designated lane by more than a certain pre-defined tolerance
value. The system under test is an omniscient driving agent
called BeamNG.AI that aims to follow the given road path
while staying close to a pre-defined speed limit. During the
competition each tool was evaluated in two different experi-
mental set-ups: Default and SBST21. For both configurations,
test inputs had to be generated within a given map of size
200 m x 200 m. The Default set-up was executed 5 times
with a time budget of 5 hours per execution, a tolerance
value of 0.95 and no speed limit. The SBST21 set-up was
carried out 10 times with a shorter time budget of 2 hours
per run, a tolerance value of 0.85 and a speed limit of 70
km/h. Each test-run is evaluated regarding the total number
of triggered failures, but also the diversity between failure-
inducing inputs. Furthermore, the total number of generated
test inputs as well as the share of valid and invalid test inputs



are considered to evaluate the tool performance regarding test
generation efficiency and effectiveness.

IV. BENCHMARK RESULTS

Table I shows the results obtained for both GAB con-
figurations in the default experimental set-up and Table II
summarizes the results obtained in the SBST21 experiment
set-up. The following abbreviations are used: TR: test run, N-
TC: test cases generated, V: valid test cases, I: invalid test
cases, P: passed test cases, F: failing test cases, E: errors, SP:
sparseness, N-SH: number of to sharp test cases, N-I: number
of intersecting test cases.

TABLE I
BENCHMARK RESULTS FOR THE DEFAULT EXPERIMENT SET-UP.

GABExploit
TR N-TC V I P F E SP N-SH N-I
1 306 299 7 287 12 0 4.093 7 0
2 474 393 81 308 85 0 12.785 81 0
3 461 431 30 311 120 0 10.795 30 0
4 311 309 2 299 10 0 8.608 2 0
5 415 357 58 357 0 0 - 58 0
AVG 393.4 357.8 35.6 312.4 45.4 0 9.07 35.6 0

GABExplore
TR N-TC V I P F E SP N-SH N-I
1 425 357 68 356 1 0 - 68 0
2 351 325 26 322 3 0 19.731 26 0
3 470 384 86 383 1 0 - 86 0
4 331 322 9 314 8 0 21.887 9 0
5 329 310 19 308 2 0 18.087 19 0
AVG 381.2 339.6 41.6 336.6 3 0 19.9 41.6 0

First, we see that both test generator configurations fulfill
their unique purpose, i.e., GABExploit maximizes the amount
of failing test cases and GABExplore maximizes the sparse-
ness between failing test cases . In particular, with 120 failing
test cases GABExploit exposed the highest number of failing
tests in the default experimental set-up in the course of this
competition. However, GABExploit did not show consistent
performance and did not even find one failing test case in
the last run. Furthermore, since this configuration does not
promote searching for diverse failing test cases we see a lower
sparseness of the generated failing test cases, which indicates
an opportunity for improvement considering test efficiency. In
contrast, GABExplore did not generate a comparable amount
of failing test cases but the once we generated were unique.
Furthermore, for the default set-up, GABExplore showed
consistent performance over all test runs in finding at least
one failure inducing test input. Similar observations can be
made for the SBST21 experiment set-up, depicted in Table II.
However, here we see that GABExplore is less efficient when
given the smaller time budget. If we compare the results to
the once obtained in the default configuration we see that
GABExplore significantly improves when given more time for
the calculation and search. It is worth noting that we were able
to limit the number of invalid test cases and never generated
intersecting test cases at all.

TABLE II
BENCHMARK RESULTS FOR THE SBST21 EXPERIMENT SET-UP.

GABExploit
TR N-TC V I P F E SP N-SH N-I
1 184 160 24 75 84 1 5.462 24 0
2 126 119 7 101 18 0 33.45 7 0
3 224 216 8 89 126 1 12.854 8 0
4 124 119 5 81 38 0 11.841 5 0
5 153 135 18 135 0 0 - 18 0
6 121 120 1 109 11 0 15.466 1 0
7 155 129 26 82 47 0 9.28 26 0
8 123 123 0 123 0 0 - 0 0
9 129 121 8 93 28 0 9.41 8 0
10 124 114 10 109 5 0 4.563 10 0
AVG 146.3 135.6 10.7 99.7 35.7 0.2 12.79 10.7 0

GABExplore
TR N-TC V I P F E SP N-SH N-I
1 137 125 12 125 0 0 - 12 0
2 132 123 9 122 1 0 - 9 0
3 120 113 7 112 1 0 - 7 0
4 127 118 9 118 0 0 - 9 0
5 141 135 6 134 1 0 - 6 0
6 143 132 11 129 3 0 2.434 11 0
7 33 30 3 8 0 22 - 3 0
8 142 139 3 138 0 0 - 3 0
9 121 118 3 115 3 0 18.075 3 0
10 151 126 25 126 0 0 - 25 0
AVG 124.7 115.9 8.8 112.7 0.9 2.2 10.25 8.8 0

V. CONCLUSION

This paper reports on the results of GaBezier’s participation
at the first edition of the Cyber-Physical Systems Testing
Tool Competition. In one test run GAExploit achieved the
highest number of failing test cases of all tools in the compe-
tition. However, the high similarity between failing test cases,
reduces the overall test efficiency, offering opportunity for
improvement.

REFERENCES

[1] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, pp. 15–24, 04 2016.

[2] F. Wotawa, “Testing autonomous and highly configurable systems:
Challenges and feasible solutions,” in Automated Driving: Safer and
More Efficient Future Driving, D. Watzenig and M. Horn, Eds.
Cham: Springer International Publishing, 2017, pp. 519–532. [Online].
Available: ”https://doi.org/10.1007/978-3-319-31895-0-22”

[3] F. Klück, L. Klampfl, and F. Wotawa, “Automatic generation of challeng-
ing road networks for alks testing based on bezier curves and search,”
2021, arXiv:2103.01288 [cs.SE].

[4] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “Sbst tool com-
petition 2021,” in International Conference on Software Engineering,
Workshops, Madrid, Spain, 2021. ACM, 2021.

[5] F. Kluck, M. Zimmermann, F. Wotawa, and M. Nica, “Genetic algorithm-
based test parameter optimization for adas system testing,” in Proceedings
- 19th IEEE International Conference on Software Quality, Reliability
and Security, QRS 2019, ser. Proceedings - 19th IEEE International
Conference on Software Quality, Reliability and Security, QRS 2019.
United States: Institute of Electrical and Electronics Engineers, 7 2019,
pp. 418–425.

[6] “https://github.com/se2p/tool-competition-av.” [Online]. Available:
https://github.com/se2p/tool-competition-av

[7] BeamNG GmbH, “BeamNG.research,” software version 1.3.0.0, 2018-10-
11, https://www.beamng.gmbh/research.


