
A Novelty Search and Metamorphic Testing
Approach to Automatic Test Generation

Byron DeVries
School of Computing

Grand Valley State University
Allendale, Michigan

Email: devrieby@gvsu.edu

Christian Trefftz
School of Computing

Grand Valley State University
Allendale, Michigan

Email: trefftzc@gvsu.edu

Abstract—A common task in search-based testing is automat-
ically identifying valuable test cases for software systems. How-
ever, existing approaches tend to either search for unique tests
with regard to inputs or outputs (i.e., novelty search) or search for
inputs that invalidate some expected proposition regarding the
software (i.e., metamorphic testing). Problematically, verifying
unique tests induces the oracle problem while an invalidated
proposition results in a single test case. In this paper we utilize
novelty search and metamorphic testing to discover a broad range
of unique test cases that are directly verifiable via a metamorphic
relation and invalidate such an expected proposition in fewer
generations of an evolutionary algorithm than direct search. We
apply this novelty search and metamorphic testing combination
to discover errors in identifying the midpoint of a geodesic as a
proof-of-concept.

Index Terms—novelty search, metamorphic testing, test gener-
ation

I. INTRODUCTION

Search-based generation of test data is an appealing solu-
tion to the time-consuming and difficult process of manually
identifying test cases. It is so appealing that we decided to
use it to verify our use of geodesic geometry. However, for
each test case identified it is also necessary to identify a
method of verification - most typically expected results from
the software. Problematically, it is difficult to automatically
identify expected results (i.e., the oracle problem) and, in some
cases, it is infeasible [1].

Two primary methods of generating test cases have been
explored in the literature: optimizing for a specific property
(e.g., code coverage [2]) that may utilize an attempt to
generate a test oracle and novelty search-based methods [3].
Problematically, code coverage does not necessarily directly
correlate with eliciting faults [4], [5] and novelty search-based
methods require an oracle often derived from the code itself
(e.g., mutation-based testing methods [6]).

While direct optimization of a fitness function may identify
a verifiable test case of interest and novelty search may identify
multiple diverse behaviors, neither identifies a set of multiple
test cases that can be automatically verified. In this paper
we utilize metamorphic relations to verify multiple test cases
identified by novelty search. Further, using novelty search has
been shown to optimize objectives in less generations of a

genetic algorithm than direct objective optimization despite
only explicitly searching for novel (not optimal) solutions [7].

The contributions of this paper are as follows:
• We present a method using both novelty search and

metamorphic testing to identify unique and verifiable test
cases, and

• We present a proof-of-concept and compare the results
of the combined approach to direct search alone.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the background information.
Section III introduces the approach. Section V covers related
work, and Section VI discusses conclusions and future work.

II. BACKGROUND

This section covers background in novelty search, metamor-
phic testing, and the geometry of geodesics.

A. Novelty Search

While most optimization methods attempt to optimize some
objective, novelty search ignores the objective entirely. Coun-
terintuitively, novelty search looks for unique phenotypic be-
haviors from the outputs rather than optimal behaviors [7].
Novelty search does this by setting the objective of a tradi-
tional genetic algorithm to reward outputs that are most dif-
ferent than what has been identified previously - often within
some set number of nearest neighbors. When a sufficiently
novel output is identified, it is added to a novelty archive
that other outputs are measured against. Rather than returning
a single optimum, novelty search returns a whole range of
outputs within its population and novelty archive. In some
applications novelty search identifies optimal results in fewer
generations than direct optimization [7]. In this paper we refer
to traditional genetic algorithms that optimize for a fitness
function directly as direct search to differentiate from novelty
search.

B. Metamorphic Testing

Originally presented as a method to generate tests [8],
the use of metamorphic testing has expanded to overcome
the oracle problem and is used across a wide variety of
domains [9]. Rather than test via inputs and expected outputs,
metamorphic testing establishes metamorphic relations that



indicate how system behavior can be compared to other
behavior. Metamorphic relations can either be input driven
(e.g., two different inputs should provide the same result)
or output driven (e.g., two different outputs are comparable
based on a known difference in inputs). These metamorphic
relations enable metamorphic testing to provide a method of
generating multiple test cases and actually verify without an
oracle. For example, given a program to detect exactly how
many pine needles are on a tree, how could expected results
(e.g., the number of pine needles) be found? It is not practical
to actually count the pine needles, but it is practical to obtain
the program results for a tree, then (secretly) take some number
of pine needles off the tree and obtain the program results
again. The difference in program response should match the
alteration to the tree. By changing an input to the program,
a metamorphic relation can be used to compare the outputs
without ever knowing the correct result. Similarly, multiple
test cases can be generated by removing differing numbers of
pine needles.

C. Geometry of Geodesics
While the shortest distance between two points in Euclidean

space is straight, the shortest distance between two points
across the surface of the earth is not. First, since the earth
is not flat, the shortest path along the surface must be curved
to the surface between the two points. Second, since the path
must conform to the surface of the earth, it is shorter to “bend”
the path towards the nearest pole to minimize the additional
curve to match the surface. In Figure 1 a straight line from
point A to C would actually be longer than the curved line
(through B). This is one of the primary reasons flights between
North America and Europe appear to “bend” further north on a
two-dimensional projection of the earth. These shortest paths
are geodesic segments on a great circle that represents the
largest circle that can be created dividing a sphere in half [10].
The equator, for example, is a great circle, as is every line of
longitude.

Fig. 1. Shortest Path on a Sphere

In this paper we use a Java port of GeographicLib1 that uses
existing geodesic algorithms in [11] where errors are less than
15 nanometers for our desired operations [12] on an earth-
representing WGS84 (World Geodetic System 1984) ellipsoid
model.

III. APPROACH

In this section we describe the geodesic midpoint problem
we aim to identify test cases for, a metamorphic relation for

1https://geographiclib.sourceforge.io/

the geodesic midpoint problem, our direct search method, and
our novelty search method.

A. Geodesic Midpoint Problem

The software under test calculates the midpoint of a
geodesic defined by two points on earth using latitude and
longitude as part of a geodesic implementation of an exist-
ing divide-and-conquer Voronoi diagram generator for two-
dimensional Euclidean space [13]. While an exceedingly
straight-forward operation in two-dimensional Euclidean ge-
ometry, dividing the shortest path between two points on a
spheroid has some pitfalls, including:

• Difficulties around, at, and over the poles, and
• Rollover from negative to positive longitude (or vice-

versa) at the international date line.
Consider the curved line in Figure 1 from A through B to

C. The midpoint (i.e., point B) divides the distance on the
shortest path into two geodesic segments that are each half
the length of the original. Verifying this point is accurately
identified is difficult without relying on the same operations
used to define the point originally.

B. Metamorphic Relation

Given two points made up of latitude, φ, and longitude, λ,
we expect the same midpoint to be calculated regardless of
which point the midpoint is calculated from. That is, given
the points (φ1, λ1) and (φ2, λ2), a function that returns the
midpoint should return the same value regardless of the order
of the points. The following metamorphic relationship is true
outside of the expected error (i.e., up to 15 nanometers in the
algorithms used by GeographicLib):

mid((φ1, λ1), (φ2, λ2)) ≈ mid((φ2, λ2), (φ1, λ1)) (1)

Test cases can be created for any set of valid latitude and
longitude for two points and verified using Equation 1, without
knowledge of the expected results.

C. Direct Search

In order to identify the largest possible error detectable
by the metamorphic relation in Equation 1, we identify a
fitness function that maximizes the difference between the
two calculated midpoints. We use the latitude and longitude
as points on a two-dimensional Euclidean plane instead of
measuring actual physical distance to avoid relying on the
geodesic operations under test:

fitness =
√
(φmid1 − φmid2)

2 + (λmid1 − λmid2)
2 (2)

We maximize the fitness function defined in Equation 2 via
a genetic algorithm with a 3% chance of mutation, simulated
binary crossover [14], and tournament selection across three
individuals using the Jenetics2 library. A population of 500 is
used and the number of generations is limited to 1000.

2https://jenetics.io/



Fig. 2. Comparison of Final Fitness

D. Novelty Search

Rather than optimizing for the fitness function in Equation 2
directly, the genetic algorithm described previously is extended
to include a novelty archive (limited to 100 individuals). The
fitness function is replaced by the average two-dimensional
Euclidean distance between the 10 nearest individuals com-
puted using the two midpoints representing the phenotypic
output as a 4-tuple (i.e., φmid1 , λmid1 , φmid2 , λmid2 ). That is,
the novelty measurement is defined as:

novelty(x) =
1

k

k∑
i=0

dist(x, µi) (3)

Where k is 10 and µ is the novelty archive in order of distance
to x, and x is the 4-tuple for which the novelty is being
calculated.

IV. RESULTS

Both novelty search and a direct search via a genetic
algorithm were used to identify the most problematic (i.e.,
highest fitness from Equation 2) test cases over a series of 50
runs each, limited to 1000 generations with a population of
500 individuals. Novelty search employed a novelty archive
of 100, which provides a diverse set of test cases, while the
novelty metric was based on the average distance from 10
nearest neighbors.

Figure 2 shows a comparison of the fitness of the most
problematic individual at the end of 1000 generations for both
the novelty and direct search. Direct search is infrequently
able to achieve as high a fitness as novelty search. The
median fitness is only 5.5e-11 while the average fitness is
85.0. Novelty search obtained a median fitness of 360.0 and an
average fitness of 333.4. We used Wilcoxon-Mann-Whitney U-
test to measure statistical significance, due to the non-normal

Fig. 3. Comparison of Average Fitness Convergence

distribution of each dataset [15], [16], and the difference is
significant (p < 5e-11).

Figure 3 shows the average maximum fitness of the 50 runs
over the 1000 generations the novelty search and direct search
genetic algorithms were executed. It is clear that, despite
not expressly searching to maximize the fitness defined by
Equation 2, the novelty search converges significantly more
rapidly than the direct search method.

Multiple smaller errors are identified due to computations
around and on the poles. The largest error, however, is due to
both 180◦ and −180◦ longitude referring to the same location,
a problem that could cause significant downstream effects on
an application that depends on tight ranges.

A. Limitations & Threats to Validity

While the results are promising, there are several limitations
that must be acknowledged. First, the example is limited
to a single, limited, case study with a single metamorphic
relationship. Second, the rate of convergence is likely to be
impacted by the fitness functions or novelty metrics chosen.
The novelty metric used in novelty search must be chosen care-
fully from amongst the possible measures of behavior. Third,
metamorphic relations must be manually defined in order to
generate test cases, often a difficult task [17], [18]. Finally, the
computational cost of each novelty search generation is higher
due to the additional overhead of calculating novelty for each
individual in the population using the k-nearest neighbors.

V. RELATED WORK

Significant work has been done in the area of generating
test data, including work that uses novelty search [3]. For
example, novelty search has been used to address environ-
mental uncertainty in systems by searching for unexpected
behavior [19]–[21] and verifying deep learning systems [22].
Metamorphic testing has been used in a wide variety of
applications, including everything from compilers [23] to self-
driving cars [24]. Two recent metamorphic testing surveys in



2016 [25] and 2018 [9] cover the broad range of application
areas. Our method differs from each of these methods by
combining both novelty search with metamorphic testing to
achieve a wide range of verifiable tests while greatly increasing
the convergence rate.

Other methods to generate test data often require some
form of implicit, derived, or specified test oracle [26]. In
the case of our work, we manually specify the test oracle
via the metamorphic relation. However, mutation-driven test
oracles [6], crowd-sourced test oracles [27] including those for
crowd-sourcing metamorphic relations [28], and even meth-
ods to improve code-based test generation via metamorphic
testing [29] provide at least some level of automation. While
our current case study requires manually defined metamorphic
relations, existing work on automatically generating meta-
morphic relations [30]–[32] could be leveraged while still
benefiting from the combined benefit of novelty search.

VI. CONCLUSIONS

In this paper, we have presented an approach to automati-
cally identifying valuable test cases for software systems using
a combination of novelty search and metamorphic testing.

We have demonstrated our approach on a small case study as
a proof-of-concept that shows the benefit to the combination
of novelty search and metamorphic testing. Future research
directions are focused on extending the domains of the case
study to provide greater empirical evidence and address the
limitations previously identified. Additionally, we hope to
integrate automatically identified metamorphic relations to
reduce the manual effort required.

REFERENCES

[1] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing:
Testing the untestable,” IEEE Software, 2018.

[2] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[3] M. Boussaa, O. Barais, G. Sunyé, and B. Baudry, “A novelty search
approach for automatic test data generation,” in 2015 IEEE/ACM 8th
International Workshop on Search-Based Software Testing. IEEE, 2015,
pp. 40–43.

[4] C. Gaffney, C. Trefftz, and P. Jorgensen, “Tools for coverage testing:
necessary but not sufficient,” Journal of Computing Sciences in Colleges,
vol. 20, no. 1, pp. 27–33, 2004.

[5] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th international
conference on software engineering, 2014, pp. 435–445.

[6] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Transactions on Software Engineering, vol. 38, no. 2,
pp. 278–292, 2011.

[7] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, vol. 19, no. 2,
pp. 189–223, 2011.

[8] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new approach
for generating next test cases. technical report hkust-cs98-01,” Hong
Kong Univ. of Science and Technology, 1998.

[9] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[10] P. Pokorny, “Geodesics revisited,” Chaotic Modeling and Simulation, pp.
281–298, 2012.

[11] C. F. Karney, “Algorithms for geodesics,” Journal of Geodesy, vol. 87,
no. 1, pp. 43–55, 2013.

[12] ——, “Geodesics on an ellipsoid of revolution,” arXiv preprint
arXiv:1102.1215, 2011.

[13] E. Smith, C. Trefftz, and B. DeVries, “A divide-and-conquer algorithm
for computing voronoi diagrams,” in 2020 IEEE International Confer-
ence on Electro Information Technology (EIT). IEEE, 2020, pp. 495–
499.

[14] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 3, pp. 1–15, 1994.

[15] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in 2011 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 1–10.

[16] ——, “A hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering,” Software Testing, Verification and
Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[17] W. B. Langdon, S. Yoo, and M. Harman, “Inferring automatic test
oracles,” in 2017 IEEE/ACM 10th International Workshop on Search-
Based Software Testing (SBST). IEEE, 2017, pp. 5–6.

[18] P. A. Nardi and E. F. Damasceno, “A survey on test oracles,” 2015.
[19] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester,

“Automatically exploring how uncertainty impacts behavior of dynam-
ically adaptive systems,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 568–571.

[20] M. A. Langford, G. A. Simon, P. K. McKinley, and B. H. Cheng,
“Applying evolution and novelty search to enhance the resilience of
autonomous systems,” in 2019 IEEE/ACM 14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2019, pp. 63–69.

[21] M. A. Langford and B. H. Cheng, “Enhancing learning-enabled software
systems to address environmental uncertainty,” in 2019 IEEE Interna-
tional Conference on Autonomic Computing (ICAC). IEEE, 2019, pp.
115–124.

[22] V. Riccio and P. Tonella, “Model-based exploration of the frontier of
behaviours for deep learning system testing,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 876–
888.

[23] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach
for compiler based on metamorphic testing technique,” in 2010 Asia
Pacific Software Engineering Conference. IEEE, 2010, pp. 270–279.

[24] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 132–142.

[25] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[26] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507–525, 2014.

[27] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the crowd
solve the oracle problem?” in 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation. IEEE, 2013, pp. 342–
351.

[28] Y. Yang and C. Xu, “Mr hunter: Hunting for metamorphic relations by
puzzle solving,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, 2020, pp. 404–409.

[29] P. Saha and U. Kanewala, “Improving the effectiveness of automati-
cally generated test suites using metamorphic testing,” arXiv preprint
arXiv:2004.08518, 2020.

[30] A. Nair, K. Meinke, and S. Eldh, “Leveraging mutants for automatic
prediction of metamorphic relations using machine learning,” in Pro-
ceedings of the 3rd ACM SIGSOFT International Workshop on Machine
Learning Techniques for Software Quality Evaluation, 2019, pp. 1–6.

[31] B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato, “Automatic
discovery and cleansing of numerical metamorphic relations,” in 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019, pp. 235–245.

[32] U. Kanewala, “Techniques for automatic detection of metamorphic
relations,” in 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops. IEEE, 2014, pp. 237–
238.


