
SWAT tool at the SBST 2021 Tool Competition
Dmytro Humeniuk

Polytechnique Montréal
Montreal, Canada

dmytro.humeniuk@polymtl.ca

Giuliano Antoniol
Polytechnique Montréal

Montreal, Canada
giuliano.antoniol@polymtl.ca

Foutse Khomh
Polytechnique Montréal

Montreal, Canada
foutse.khomh@polymtl.ca

Abstract—SWAT is a test case generating tool for testing cyber-
physical systems (CPS). In the context of SBST 2021 CPS testing
competition, it has been adapted to generating virtual roads to
test a lane keeping assist system. It has achieved the best ratio
between valid and generated test cases, producing over 95% valid
test cases in both testing configurations.

Index Terms—test cases, virtual roads, competition

I. INTRODUCTION

Cyber-physical systems, such as cars with adaptive cruise
control, robotic systems or smart buildings are becoming an
important part of the modern world. Testing such systems
poses new challenges, not yet addressed by software quality
assurance techniques. Therefore, in addition to the Java unit
testing tool competition, CPS testing tool competition was
introduced this year as a part of the SBST2021 Workshop1.
This novel competition aims to promote open research on
the challenges of CPS testing. This year it was dedicated to
generating test cases for a lane keeping assist system. In this
paper we describe the principle of operation of the SWAT
tool, submitted to the competition. The results of SWAT tool
performance are outlined in the competition report [1].

II. SWAT TOOL DESCRIPTION

In the current implementation, the tool uses Markov process
to generate the test cases. As the input user specifies the time
budget as well as the size of the two-dimensional map to
use for scenarios. The tool generates the virtual roads as a
sequences of points, defining the road spine. These roads are
further transferred to BeamNG [2] based self-driving vehicle
simulator for evaluation. The goal is to generate valid roads
that force the ego-car, i.e., the test subject, to drive off its lane.
According to the competition rules 2, the main requirements
for valid roads are:

1) roads must never intersect or overlap;
2) turns must have a geometry that allows the ego-car to

completely fit in the lane while driving on them; turns
with small radius, are disallowed;

3) roads must completely fit the given squared map bound-
aries.

In the following subsections we describe how the SWAT tool
achieves valid road generation, how to use SWAT as well as
our plans for future work on improving the tool performance.

1https://github.com/se2p/tool-competition-av
2https://github.com/se2p/tool-competition-av/blob/main/documentation/

GUIDELINES.md

A. SWAT tool principle of operation

As inspired by the AsFault tool [3], the virtual road gen-
eration starts by creating a road backbone vector, defined by
two points. We further refer to it as to ”road vector” . The
vector length corresponds to a two lane road width, i.e. 8
meters. The vector end is defined as the point with the highest
Y-coordinate. The initial position is randomly selected in the
middle of one of the map margins. Then, affine transformations
are applied to the initial vector. Finally, the road defining
coordinates are calculated as the transformed vectors middle
points. We use three types of transformations:

• parallel transition, corresponding to road going straight;
• clockwise rotation, corresponding to road turning right;
• anticlockwise rotation, corresponding to road turning left.

In the fig.1 you can see the obtained road spine points (yellow)
after applying affine transformations to the initial vector a,
selected among other possible initial vectors b, c and d.
The sequences of transformations are defined automatically,

Fig. 1. Possible initial vectors a, b, c and d (red). Road spine points (yellow)
generated after applying vector affine transformations (blue) starting from
vector a

using the Markov chain with three states: ”go straight”, ”turn
right” and ”turn left”. The designed Markov chain with the
probabilities for changing states is shown in the fig.2. We
fine-tuned the probabilities empirically, so that on average,
longer loads are produced. To each selected state, the value is
randomly assigned from the list of accepted values. In current
configuration, the range of values for going straight is from 5
to 50 meters, for turning left or right - from 10 to 70 degrees.

 https://github.com/se2p/tool-competition-av
 https://github.com/se2p/tool-competition-av/blob/main/documentation/GUIDELINES.md
 https://github.com/se2p/tool-competition-av/blob/main/documentation/GUIDELINES.md


Fig. 2. Markov chain for generating virtual roads

The next challenge is to construct valid roads from the
given sequences of commands, i.e. ”go straight N meters”,
”turn left A degrees”, ”turn right A degrees”, etc. Examples
of performing ”turn left 15 degrees”, ”turn right 15 degrees”
and ”go straight N meters” transforms to a vector are shown
in figures 3, 4 and 5 respectively.

To perform the rotation, it’s important to correctly select the
rotation axis, which can be below or above the road vector.
The choice depends on the direction in which the road vector
moves along the road map. For a left turn, the vector is rotated
anti-clockwise around the axis, for the right turn - clockwise.

Our initial strategy was to infer the direction of the move-
ment from the location of the previous vector. This approach,
however, produced a relatively high number of invalid roads.
The strategy that worked best and that is implemented in the
SWAT tool is illustrated in the figures 6 - 9, where a left turn
is performed and vector is moving from position A to B.

Fig. 3. Turn left
transform

Fig. 4. Turn right
transform

Fig. 5. Go straight
transform

Fig. 6. Correct choice of the
axis, rotated vector is outside
the polygon

Fig. 7. Incorrect choice of the
axis, rotated vector is inside the
polygon

Fig. 8. Incorrect choice of the
axis, rotated vector is inside the
polygon

Fig. 9. Correct choice of the
axis, rotated vector is outside
the polygon

First, the rotation axis is selected to be above the road
vector. If after the anti-clockwise rotation (clockwise for right
turn) for a small angle value (2 degrees) the rotated vector
appears inside the polygon defined by the current and previous
road vectors, the location of rotation axis is changed and
transform is performed using the new location. If the rotated
vector is outside the polygon, the transform is performed using
current axis location. The intuition is that the new vector
position should not intersect with the path defined by previous
vectors.

The road generation stops, when the road vector goes out
of the road map bounds.

B. How to use

The tool is open source and available at [4], where the
instructions on how to run it are provided. Currently it is
integrated in the SBST 2021 CPS competition pipeline.

C. Future improvements

Current version of the tool was proven to be effective
at generating valid virtual roads, achieving the highest ratio
between valid and generated test cases among four other tools.
The fault revealing power of the generated tests can be im-
proved by adding a search-based technique. We are currently
working on implementing a genetic algorithm with two fitness
functions: test case diversity and difference between expected
car path (generated road) and simulated car path. To evaluate
the second fitness function, a simplified car model will be used
to execute the test cases generated by the Markov chain, as
described in [5].

REFERENCES

[1] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo
Riccio. Sbst tool competition 2021. In International Conference on
Software Engineering, Workshops, Madrid, Spain, 2021. ACM, 2021.

[2] BeamNG GmbH. BeamNGpy. https://github.com/BeamNG/BeamNGpy,
2021.

[3] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing
self-driving cars with search-based procedural content generation. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 318–328, 2019.

[4] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. Swat tool.
https://github.com/dgumenyuk/tool-competition-av.git, 2021.

[5] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. Data Driven
Testing of Cyber Physical Systems. arXiv:cs.CR/2102.11491, 2021.

https://github.com/BeamNG/BeamNGpy
https://github.com/dgumenyuk/tool-competition-av.git
arXiv:cs.CR/2102.11491

	Introduction
	SWAT tool description
	SWAT tool principle of operation
	How to use
	Future improvements

	References

