
Kex at the 2021 SBST Tool Competition
Azat Abdullin∗, Marat Akhin† and Mikhail Belyaev‡

Peter the Great St. Petersburg Polytechnic University
JetBrains Research

Saint Petersburg, Russia
Email: {∗abdullin, †akhin, ‡belyaev}@kspt.icc.spbstu.ru

Abstract—Kex is an automatic white-box test generation tool
for Java programs, which is able to generate executable test
suites (as JUnit test suites) aiming to satisfy the branch coverage
criterion. It uses symbolic execution to analyze control flow
graphs of the program under test (PUT) and produces interesting
symbolic inputs for each basic block of PUT. Kex then feeds these
symbolic inputs to an original backward-search based algorithm
called Reanimator, which generates executable JUnit test cases
satisfying the symbolic inputs. This paper summarizes the results
and experiences of Kex participation in the ninth edition of the
Java unit testing tool competition at the International Workshop
on Search-Based Software Testing (SBST) 2021.

Index Terms—automatic test generation, symbolic execution,
software testing

I. INTRODUCTION

This paper discusses the results obtained by the Kex [1] tool
on the benchmarks of ninth edition of Java unit testing tool
competition at the International Workshop on Search-Based
Software Testing (SBST) 2021, where Kex received a score
of 44.21 and ranked fifth. The full report on the competition
can be found in [2].

II. KEX

Kex is an automatic white-box [3] unit test generation tool
for Java [1], which is mainly usable as a command-line tool.
Table I summarizes the features of Kex in the standard format
of SBST tool competition. As an input, Kex accepts a program
under test (PUT) in a form of compiled JVM bytecode files
and generates a test suite aiming to reach full branch coverage;
tests are emitted as JUnit 4 test classes.

Processing the PUT in the form of compiled bytecode files
is done using Kfg1 library, which helps with analysis and
construction of PUT control flow graphs (CFG). Kfg is also
used to do various CFG transformations, e.g., loop unrolling
or inlining, to help with the subsequent analyses.

Kex works as a symbolic execution engine and uses SMT
solvers to perform the constraint solving. For each CFG of the
target program Kex builds its own intermediate representation
called predicate state. Predicate state serves as an inter-
layer between Kfg and SMT formulae, allowing it to easily
support multiple SMT solvers (such as Boolector [4], Z3 [5]
or STP [6]). It is also used to perform additional, SMT-
specific transformations. In the SBST 21 Java unit testing tool
competition Kex was configured to use the Z3 solver.

1https://github.com/vorpal-research/kfg

TABLE I
CLASSIFICATION OF THE KEX UNIT TEST GENERATION TOOL

Prerequisites
Static or dynamic Combined
Software type JVM bytecode
Lifecycle phase Unit testing for Java programs
Environment Java 8
Knowledge required JUnit 4
Experience required Basic unit testing knowledge
Input and Output of the tool
Input Bytecode of the PUT and dependencies
Output JUnit 4 test cases
Operation
Interaction Through the command line
User guidance –
Source of information https://github.com/vorpal-research/kex
Maturity Research prototype, under development
Technology behind the tool Symbolic execution
Obtaining the tool and information
License Apache 2.0
Cost Open source
Support None
Empirical evidence about the tool
–

Kex works at a basic block level of CFG2. At each step
it selects a previously uncovered basic block from the CFG
and tries to generate a symbolic input which will cover it.
If the generation succeeds, Kex feeds the generated symbolic
input into its test generation component called Reanimator. It
is based on a original backward search algorithm that tries to
find a sequence of actions to generate the target object, while
using symbolic execution to infer the effects these actions have
on the object state. Given an object representation (in any
form), Reanimator attempts to generate a valid code snippet
which constructs this object using its publicly available API.-
These code snippets are then used as test cases for PUT.

Main practical limitations of Kex come from the underly-
ing techniques it uses for analysis and test case generation.
Symbolic execution is known to be limited in its ability
to analyze large-scale programs, as it encounters the state
explosion problem. One may attempt to overcome this problem
by underapproximating the program behaviour (e.g., through
loop unrolling), but this trade-offs performance for precision.
Another limitation of Kex is the test generation process.
During the analysis phase Kex can produce symbolic inputs

2Branch coverage is achieved by generating placeholder basic blocks for
empty if/else branches.



TABLE II
RESULTS OF KEX ON THE CONTEST

BENCHMARKS (30 SECONDS TIME BUDGET)

Benchmark Line cov. Cond. cov. Mut. cov. Mut. kill
GUAVA-61 2,25 0,00 1,60 0,00

GUAVA-200 13,06 13,27 18,91 18,91
GUAVA-118 0,00 0,00 0,00 0,00
GUAVA-226 1,59 0,00 1,35 1,35
GUAVA-128 56,69 1,35 1,58 0,00

GUAVA-11 46,81 41,18 58,54 58,54
GUAVA-181 70,69 64,71 92,16 92,16
GUAVA-134 2,30 0,00 1,30 1,30
GUAVA-231 6,00 0,00 0,00 0,00
GUAVA-232 15,71 11,83 0,00 0,00
GUAVA-108 9,59 4,80 2,31 1,98

GUAVA-71 14,29 0,00 0,00 0,00
GUAVA-273 5,47 1,85 4,76 0,00

GUAVA-96 3,21 0,00 2,70 2,70
GUAVA-82 64,08 66,18 73,68 73,68
GUAVA-46 46,23 27,55 53,13 37,19

GUAVA-192 0,37 0,00 0,00 0,00
GUAVA-199 6,67 0,00 0,00 0,00
GUAVA-213 7,14 0,00 0,00 0,00
GUAVA-148 23,08 4,17 12,77 12,77
GUAVA-156 2,06 0,00 0,89 0,89
GUAVA-227 6,25 0,00 0,00 0,00
GUAVA-237 34,63 37,33 39,25 3,88
GUAVA-254 48,84 42,86 51,52 51,52
GUAVA-267 24,23 28,21 25,97 25,97

SEATA-11 0,00 0,00 0,00 0,00
SEATA-27 0,00 0,00 0,00 0,00

SEATA-6 0,00 0,00 0,00 0,00
SEATA-5 0,00 0,00 0,00 0,00

SEATA-25 0,00 0,00 0,00 0,00
SEATA-28 0,00 0,00 0,00 0,00

which are not constructible using the public API of PUT, and
Reanimator will not be able to convert such inputs to tests.

III. BENCHMARK RESULTS

Table II reports the results of Kex on two of the six
benchmark projects (guava and seata) for the 30 seconds time
budget. Competition organizers reported that Kex failed to
produce any test cases for the other four projects. For each
benchmark program, the table reports the score in terms of
the line coverage, condition coverage, mutant coverage and
mutant kill ratio, averaged over 6 experiment runs.

Data in table II shows Kex has not performed really well
in the competition. It has failed to analyze four out of six
projects and was able to achieve any coverage only on guava.
This problem can be explained by its relatively low degree
of maturity, as this was the first time Kex was used as a
standalone off-the-shelf tool, and not as a research prototype.
Thus, its implementation issues has limited its ability to
perform on most of the competition benchmark. At the current
moment, we cannot give a more detailed explanation of the
Kex downsides on the benchmark projects.

For the guava project, however, we can see Kex results
average with about 20% line coverage and 14% branch cover-
age. These numbers are more competitive with the results of
other participating tools, but still require further analysis. As

currently we do not have access to full experimental data, we
decided to manually analyze the source code of guava project
on those benchmarks where Kex has performed worse than
the average (i.e., achieving less than 20% line coverage). We
found out that these benchmarks contain features not currently
supported by Reanimator, such as abstract classes or non-static
inner classes. Some of the benchmark classes also use Java
reflection types, which Kex currently cannot generate.

We can summarize our insights from the contest as follows.
• Kex has some implementation issues which affect its

reliability and robustness on complex PUT;
• Both Kex and Reanimator currently do not support some

of the more complex language features (e.g., abstract
classes, inner classes, reflection);

• When not constrained by its limitations, Kex can generate
test suites with an average of 20% code coverage under
the 30 seconds time budget.

The competition has revealed a number of Kex weaknesses
both in terms of its reliability and test generation ability. We
are going to continue working on these weaknesses to get a
more mature and stable automatic test generation tool.

IV. CONCLUSION

This paper reports on the participation of the Kex test
generation tool in the ninth SBST Java Unit Testing Tool
Contest. With an overall score of 44.21, Kex was ranked fifth.
Benchmark used in the contest pointed out several issues and
limitations of Kex, which would help us find ways to improve
its performance. The benchmark infrastructure will allow us to
continue testing the tool and prepare it for the future contests.

REFERENCES

[1] Kex. [Accessed 05.03.2021]. [Online]. Available:
https://github.com/vorpal-research/kex/tree/sbst-21

[2] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “Sbst tool com-
petition 2021,” in International Conference on Software Engineering,
Workshops, Madrid, Spain, 2021. ACM, 2021.

[3] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[4] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for bit-
vectors and arrays,” in International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2009, pp. 174–
177.

[5] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer-
Verlag, 2008, pp. 337–340.

[6] V. Ganesh and T. Hansen. STP constraint solver: Simple theorem
prover SMT solver. [Accessed 25/02/2021]. [Online]. Available:
https://stp.github.io/


